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Abstract

Background: Stillbirth is defined as fetal loss in pregnancy beyond 28 weeks by WHO. In this study, a machine-
learning based method is proposed to predict stillbirth from livebirth and discriminate stillbirth before and during
delivery and rank the features.

Method: A two-step stack ensemble classifier is proposed for classifying the instances into stillbirth and livebirth at
the first step and then, classifying stillbirth before delivery from stillbirth during the labor at the second step. The
proposed SE has two consecutive layers including the same classifiers. The base classifiers in each layer are decision
tree, Gradient boosting classifier, logistics regression, random forest and support vector machines which are trained
independently and aggregated based on Vote boosting method. Moreover, a new feature ranking method is
proposed in this study based on mean decrease accuracy, Gini Index and model coefficients to find high-ranked
features.

Results: IMAN registry dataset is used in this study considering all births at or beyond 28th gestational week from
2016/04/01 to 2017/01/01 including 1,415,623 live birth and 5502 stillbirth cases. A combination of maternal
demographic features, clinical history, fetal properties, delivery descriptors, environmental features, healthcare
service provider descriptors and socio-demographic features are considered. The experimental results show that our
proposed SE outperforms the compared classifiers with the average accuracy of 90%, sensitivity of 91%, specificity
of 88%. The discrimination of the proposed SE is assessed and the average AUC of +95%, Cl of 90.51% +1.08 and
90% +1.12 is obtained on training dataset for model development and test dataset for external validation,
respectively. The proposed SE is calibrated using isotopic nonparametric calibration method with the score of 0.07.
The process is repeated 10,000 times and AUC of SE classifiers using random different training datasets as null
distribution. The obtained p-value to assess the specificity of the proposed SE is 0.0126 which shows the
significance of the proposed SE.
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Conclusions: Gestational age and fetal height are two most important features for discriminating livebirth from
stillbirth. Moreover, hospital, province, delivery main cause, perinatal abnormality, miscarriage number and maternal
age are the most important features for classifying stillbirth before and during delivery.

Keywords: Stillbirth prediction, Classification, Feature selection, Ensemble learning, IMAN registry

Background

Stillbirth is defined as fetal loss in pregnancy beyond 28
weeks by World Health Organization. It is a major pub-
lic health problem in all countries [1] specially in low
resource regions [2]. According to WHO report, 2.6
million stillbirths have been occurred globally in 2015
which 98% has been reported in low- and middle-
income countries [3].

Importance and necessity of stillbirth prediction and
identifying its main risk factors can be helpful to prevent
from stillbirth occurrence or reduce its probability in
many high risk cases. It could reduce the burden of still-
birth. Therefore, predicting stillbirth from different ma-
ternal and prenatal features has been an attractive and
important research topic in the previous studies [4-7].

Some previous studies have focused on early predic-
tion of stillbirth in the first trimester of pregnancy or be-
fore 14th to 25th gestational week [1, 4, 8]. But, a half of
stillbirth cases have been occurred during the labor
based on WHO report [3]. Therefore, the main aim of
this study is not early prediction of stillbirth. But instead,
the research problem in this study is to predict stillbirth
before and during delivery with considering the maternal
demographic characteristics, clinical features, fetal prop-
erties, labor descriptors, environmental features, health-
care service provider descriptors and socio-demographic
features as the input variables. Moreover, the input fea-
tures are ranked and scored based on their predictive
power for determining different types of stillbirth cases.
For this purpose, in this study, a big dataset including
about 1,431,597 birth cases which is registered in Iranian
Maternal and neonatal (IMAN) registry from 2016/04/
01 to 2017/01/01 is analyzed using several machine
learning methods.

The rest of the paper is organized as follows: Section 2
states related works for stillbirth prediction. In Section
3, the methodology of this research is described and
then the results and findings are reported in Sect. 4. Sec-
tion 5 discusses about the main findings of this study.
Concluding remarks are presented in Sect. 6.

Related works

In this section, we will review the previously related
studies for stillbirth prediction. For this purpose, the
related works are considered from several aspects in-
cluding the considered features, the analytical methods

for stillbirth prediction and the analyzed dataset charac-
teristics. More details of related works are described in
Additional file 1.

Different characteristics and features have been analyzed
in the previous studies for stillbirth prediction such as
maternal age [9], obesity [9], birth weight [7, 10] and fetal
growth restrictions [2, 7, 11], having prior stillbirth [7],
race [7], maternal comorbidities [2, 11, 12], maternal
occupation [11], parity [11], bleeding in pregnancy [11],
fetal anatomical properties [4], maternal life style descrip-
tors [12] and socio-demographic features [6].

The previous studies have used univariate [5] and/or
multivariate statistical analysis [2, 13] and machine
learning classifiers such as logistics regression (LR) [4, 6,
11, 13, 14], decision trees (DT), random forest, extreme
gradient boosting (XGBoost), and a multilayer percep-
tron neural network (MLP) [6] for stillbirth prediction.

A main advantage of our study compared to the
previous studies is analyzing the large population (all
stillbirth and living birth cases registered in Iranian
Maternal and neonatal records (IMAN registry) from
2016/04/01 to 2017/01/01. In this study, all births at
or beyond 28th gestational week are considered
including 1,415,623 live birth and 5502 stillbirth cases
which 4557 and 144 cases are occurred before deliv-
ery and during it, respectively. Time of stillbirth for
801 cases is unknown, therefore, they are excluded
from the second step of the study which classifies
stillbirth cases into before delivery and during it. To
the best of our knowledge, our analyzed dataset is
one of the biggest datasets considered in the studies
for stillbirth prediction till now. Moreover, different
types of stillbirth (before delivery and during the
labor process) are classified, too.

Most of the previous studies have focused on stillbirth
prediction during the first-trimester of the pregnancy.
But, according to the report published by World Health
Organization, about 50% of stillbirths have been
occurred during the labor [3]. Therefore, the characteris-
tics of the labor may be some risk factors leading to still-
birth for significant ratio of stillbirth cases. Thus, the
aim of this study is not early prediction of stillbirth. But
instead, we want to assess the effect of the labor proper-
ties as the late predictors of stillbirth to discriminate
livebirth from stillbirth and classify stillbirth cased into
before and during delivery classes.
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In this study, several machine learning classifiers are
trained and used for stillbirth prediction to reach the
best accuracy. Each classifier used in this study has dif-
ferent capabilities. To the best of our knowledge, our
used machine learning classifiers are many more than
the previously used classifiers for stillbirth prediction.

Moreover, different and more features are considering
in this study for stillbirth prediction. On the other hand,
the significance and importance of each feature is mea-
sured using several machine learning methods and fi-
nally, features are ranked based on their discriminative
power to predict stillbirth and living birth cases.

The main novelties of this study lies in several folds
including:

— To the best of our knowledge, our dataset is one of
the biggest datasets considered yet for stillbirth
prediction. The dataset is collected from all regions
of Iran country from 2016/04/01 to 2017/01/01.

— Classifying data into livebirth, stillbirth before
delivery and stillbirth during delivery.

— A new combination of the features is considered in
this study for stillbirth prediction.

— A novel feature ranking method combining different
feature importance measures is proposed and used
in this study for ranking the predictive features for
stillbirth prediction.
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— A novel stack ensemble classifier is designed and
proposed in this study for stillbirth prediction.

— The proposed novel stack ensemble outperforms the
compared classifiers for predicting stillbirth cases in
our dataset.

Methods

The main steps of our proposed research method for
stillbirth prediction and feature ranking is shown in
Fig. 1:

As illustrated by Fig. 1(a) more details of the steps of
our proposed method which is based on Cross-industry
standard process for data mining (CRISP-DM) method-
ology as the popular standard framework for data analyt-
ics application will be described in the following
subsections. Figure 1(b) indicates the architecture of our
proposed feature ranking framework and Fig. 1 (c)
shows the architecture of our proposed stack ensemble
method for classifying the instances.

Data description

In this study, a big dataset including about 1,431,597
birth cases which is registered in Iranian Maternal and
neonatal (IMAN) registry from 2016/04/01 to 2017/01/
01 is analyze. In this study, all births at or beyond 28th
gestational week are considered from which 5602 still-
birth and 1,415,623 live birth cases are occurred,
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(a) The main steps of our research framework based on CRISP-DM methodology
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Fig. 1 The main steps of our proposed research method for stillbirth prediction and feature ranking (MDA: Mean Decrease of Accuracy, DT: Decision
Tree, GBC: Gradient Boosting Classifier, LR: Logistics Regression, RF: Random Forest, SVM: Support Vector Machines, AR Aggregation Rule)
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respectively. From stillbirth cases, 4557 and 144 cases
are occurred before and during delivery, respectively.
The exact time of stillbirth for 901 cases is not known
and they will be excluded from the second step classifi-
cation in which stillbirth before delivery is discriminated
from stillbirth during delivery. Therefore, in our dataset,
0.396% of birth cases are stillbirth. Table 1 shows the
features in our dataset for stillbirth prediction.

As shown in Table 1, M/P/E/H denotes the feature
describes the maternal (M), perinatal (P), environment
(E) and health system (H) related factors.

This study aims at a hierarchical classification process
in which data instances are classified into stillbirth and
livebirth classes based on outcomel feature at first.
Then, the instances assigned stillbirth class label are
classified again into before delivery and during delivery
classes based on outcome2 feature. Stillbirth cases
having unknown occurrence time are excluded from the
second step classification.

Figure 2 denotes the frequency of stillbirth and live-
birth based on fetal gender.

As shown by Fig. 2, the highest ratio of stillbirth to live
birth occurs for fetal having unknown gender. Moreover,
the ratio of stillbirth to livebirth for males is higher than
for females.

Figure 3 indicates stillbirth and live birth frequency in
terms of gestational age.

As depicted in Fig. 3, stillbirth distribution differs
significantly from livebirth in terms of gestational age.
Therefore, gestational age can be a good predictor to
discriminate stillbirth from livebirth. Moreover, the rela-
tionship between stillbirth frequency and gestational age
is not a linear relationship and some fluctuations exist
from 28th to 34th gestational age. The number of still-
birth cases is approximately similar for 34th, 35th and
36th gestational age but the number of livebirth cases in-
creases with a dramatic slope from 34th to 38th gesta-
tional week. The peak of the livebirth frequency occurs
in 38th gestational week and the number of livebirth
cases before 34th gestational week is very low.

The frequency of stillbirth falls widely after 38th gesta-
tional week but its frequency in 39th gestational week is
not very fewer than 28 to 33th gestational week. The
number of stillbirth cases reduces significantly in 40th
gestational week comparing to the previous weeks.

Figure 4 depicts the number of stillbirth and livebirth
in terms of fetal weight (grams).

As shown by Fig. 4, the distribution of stillbirth and
livebirth based on fetal weight differs significantly. It
may show that fetal weight is a good feature to discrim-
inate stillbirth and livebirth cases.

The average + standard deviation of the number of
pregnancies for livebirth and stillbirth cases is 2.61 +
1.67 and 3.05 + 1.92, respectively. The average + standard
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deviation of the gestational age for livebirth and stillbirth
cases is 38.53 + 1.57 and 34.95 + 3.99, respectively.

The maternal age has the average + standard deviation
of 27.98+6.27 and 29.73 £ 6.73 for livebirth and still-
birth cases, respectively. Birth weight for livebirth and
stillbirth cases has the average + standard deviation of
3122.90 +485.65 and 2198.246 +939.84, respectively.
Missing value rate for the features considered in this
study lies between 0 and 4.63%. Features having more
than 5% missing values are removed from the study. The
19.74% of the population have missing values.

Data preprocessing and cleaning

Since our dataset is a real dataset registered in IMAN
registry, it should be preprocessed and cleansed to im-
prove its quality for further analytical purposes. The
main steps of data preprocessing and cleaning are data
sampling, nominal variable conversion, missing value
imputation and normalization which will be described in
more details in Additional file 1.

Feature ranking

A new feature ranking method is proposed in this study
which is shown by Fig. 1 (b). Our proposed feature rank-
ing method consists of four different methods for meas-
uring the feature importance and a module for
aggregating the feature scores to generate the final fea-
ture score.

Feature importance in our proposed method is mea-
sured based on mean decrease accuracy (MDA), Gini
Index (GI) and model coefficients (MC) which their
equations are shown in Additional file 2.

MC denotes the classifier coefficients if it is available.
For example, SVM with linear kernels finds the coeffi-
cients of different input features of the hyperplane equa-
tion separating data instances of two classes.

Some previous studies have used SVM for feature
scoring, too [15]. Feature scores can be determined by
the absolute values of the feature coefficients of the hy-
perplane separating two different classes in SVM with
linear kernel. SVM coefficients of the features show
which features are more important and which ones are
not important.Before aggregating feature scores gener-
ated with different measures and different classifiers, the
feature scores are concatenated column-wise to produce
meta feature table (MFT) as shown in Table 2.

As listed in Table 2, F, denotes the p™ input feature,
FS (Classifier;, X) denotes the feature score for the
features obtained by the s™ classifier based on X meas-
ure. X measure can be MDA, IG, MC and CN. Score,,
denotes the score of the p™ feature obtained by the q™
feature scoring method.

As illustrated by Table 2, each column of MFT indi-
cate the corresponding feature score generated with a
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Table 1 list of the features considered in our dataset for stillbirth prediction (F.Code: Feature Code, M: Maternal, P: Perinatal, E:
Enviromental, H: Health)

F.Code M/P/E/H Feature Feature Type
f1 M any pregnancy risk factor Binary
2 M gestational diabetes Binary
f3 M cardiovascular diseases Binary
f4 M other maternal underlying diseases Binary
f5 M chronic hypertension Binary
f6 P fetal abnormalities Binary
7 M Human immunodeficiency virus (HIV+) Binary
8 M Venereal Disease Research Laboratory test (VDRL+) Binary
f9 M preeclampsia or eclampsia risk factors Binary
f10 P Intrauterine growth restriction (IUGR) Binary
f11 M infant mortality after previous deliveries Binary
f12 M occurring stillbirth in the previous pregnancies Binary
f13 M Typel or Type 2 diabetes Binary
f14 M hepatitis B Binary
f15 M Chorioamnionitis Binary
f16 M maternal drug or alcohol addiction Binary
f17 M smoking Binary
f18 P placental abruption Binary
f19 P Meconium-stained amniotic fluid Binary
20 P Irregular fetal heartbeat Binary
21 p Early rupture of the amniotic sac Binary
22 M risks or dangerous causes of delivery Nominal
f24 M maternal autoimmune disease Binary
25 M epidural anesthesia Binary
26 p Placenta accreta Binary
27 M IVF in the current pregnancy Binary
f28 M number of the pregnancies Numeric
29 M number of the previous deliveries Numeric
30 M miscarriage number Numeric
f31 P gestational age Numeric
32 p fetal weight (grams) Numeric
f33 M birth number Numeric
34 M number of live children from the previous pregnancies Numeric
f35 M type of delivery (natural delivery or cesarean) Binary
f36 M cesarean main cause Nominal
37 H medical science university operator the hospital Nominal
38 E province Nominal
39 H hospital Nominal
40 H hospital type Nominal
41 p fetal gender Nominal
42 M delivery main cause Nominal
f43 H delivery place Nominal
fa4 M maternal nationality Nominal
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Table 1 list of the features considered in our dataset for stillbirth prediction (F.Code: Feature Code, M: Maternal, P: Perinatal, E:

Enviromental, H: Health) (Continued)

F.Code M/P/E/H Feature Feature Type
f45 M maternal education Ordinal

f46 M Consanguinity with spouse Binary

f47 E city Nominal

f48 M maternal insurance type Nominal

49 p fetal height (cm.) Numeric

f52 M father nationality Nominal

f53 M maternal age Numeric
Outcomel - outcome of the pregnancy: stillbirth or livebirth Binary
Outcome2 - stillbirth before delivery process, stillbirth during delivery process, unknown Nominal

feature importance measure and a classifier. Each row of
MEFT is corresponding to one input feature of our data-
set for stillbirth prediction.

Every column of MFT is normalized with min-max
normalization method to avoid dominating any column
by another one because of having different range of
values.

Rows of MFT are clustered using K-means as a popu-
lar, simple and fast clustering method. K-means parti-
tions data instances into K non-overlapping convex-
shaped clusters. Each data instance should be a member
of exactly one cluster in K-means clustering method. K-
means has some challenges including initializing the
first-round cluster centroids, determining the number of
clusters as a hyper-parameter of K-means and determin-
ing the appropriate distance function [16]. Several solu-
tions have been proposed to overcome or address the
mentioned challenges [16]. In this study, initialization of
the cluster centroids is done by choosing some data in-
stances are the initial centroids by random. Distance
function used in this study for data clustering is the
Euclidean distance function because of its appropriate-
ness for MTF which all columns have numerical type.

But, for determining the best number of clusters (K),
the clustering validity index named Silhouette is used.
Silhouette is one of the clustering validity indices which
is used for clustering interpretation and validation by
measuring the quality of the clustering results. Silhouette
is calculated based on intra cluster tightness and inter
cluster separation.

Silhouette lies between — 1 and 1 and nearest values to
1 shows better clustering result.

In this study, K is changed from 2 to 10 clusters and
the average silhouette is calculated for each clustering
resulted by K-means as shown in Fig. 5.

As shown by Fig. 5, better clustering results are
obtained for 2, 4 and 6 clusters for the first-step clas-
sification and 2, 3 and 7 clusters for the second-step
classification tasks. Therefore, we consider the results
of K-means for K=2, 4 and 6 for classifying the
instances into livebirth and stillbirth classes and K=
2, 3 and 7 for classifying the stillbirth instances into
different types of stillbirth.

Clusters are ranked based on their centroid feature
scores and the features in the worst clusters are
excluded from the feature set for training the classifiers.
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Table 2 meta feature table (MFT) listing feature scores generated with different measures and classifiers (FS: Feature Score, MDA:

Mean Decrease of Accuracy, IG: Gini-Index, MC: Model Coefficients)

Feature FS (Classifier1,MDA) FS (Classifier1,Gl) FS (Classifier1,MC) FS (ClassifierS,MC)
Fy Scorey Score 5 Scores 3 Scoreq 4
Fy Score, Score,, Scorey 3 Score, q
Fo Scorep Scoreg, Scorep s Scorepq

Training the classifiers

Stacked ensemble (SE) classifier as a meta model includ-
ing the classifiers stacked together in the consecutive
layers has been first introduced by Wolpert in 1994 [17].
Its architecture is similar to the neural networks which
uses the classifiers in SE instead of neurons in neural net-
works. SE uses one of normal or re-stacking modes in the
stacking operation. Normal stacking mode considers the
base classifiers in each layer and feeds the outputs of the
classifiers in the current layer as the inputs of the next
layer similar to a typical feedforward neural network.

The previous studies have shown that using stacked
ensembles could improve the performance of the
classification tasks [18, 19]. Therefore, in this study, a
new stacked ensemble classifier with normal stacking
mode is proposed for stillbirth prediction as shown in
Fig. 1 (c).

The proposed SE has two consecutive layers including
the same classifiers. The base classifiers in each layer are
DT [20], Gradient boosting classifier (GBC) [21], LR, RF
[22] and SVM [23] which are trained independently. The
main reason of choosing this combination of the base
classifiers is their complementary capabilities for classify-
ing dataset with different characteristics and their popu-
larity and promising performance in many previous
applications.

The outputs of these base classifiers in the first
ensemble layer consist of the first meta feature set
which is fed to the second ensemble layer as its input
features. The outputs of the base classifiers in the last
ensemble layer are concatenated column-wise as the
second meta-feature set. The second meta feature set
is aggregated by an aggregation rule to classify each
input instance. In this study, vote-boosting method is
used as the aggregation rule which specifies the
instance weights based on the degree of the agree-
ment or disagreement among its assigned labels by
the base classifiers in the last ensemble layer. Previous
studies have shown the robustness to class-label noise
ability for vote-boosting method [24].

After training the classifiers such as DT, GBC, LR, RF
and SVM in the first layer, their outputs for each
instance are considered as the features Fy; (1 <i<5). Fqy,
F15, F13, F14 and Fy5 are the predicted class labels which
are outputs of DT, GBC, LR, RF and SVM, respectively.
These features are the columns of Meta featuresl. The
Meta featuresl are fed into the classifiers of the second
layer for training them.

Tuning the hyper-parameters of the classifier is
performed with grid-search method. For this purpose,
the training dataset is divided into two non-overlapping
sets with ratio of 9:1 as training and validation datasets
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which are used for training the classifiers and assessing
the performance of the trained classifiers, respectively.

Our problem is multi class classification which aims to
classify data instances into three classes including live-
birth, stillbirth before delivery and stillbirth during deliv-
ery. Using multi-class classifiers to predict and
discriminate three mentioned classes may reduce the ac-
curacy of the model as stated in the previous studies
[25]. Therefore, a two-step classifier is proposed and
used for classifying livebirth, stillbirth before delivery
and stillbirth during delivery as two binary classification
tasks. The first step classifies all data records into live
birth or stillbirth classes. The data records which are
classified into stillbirth class in the first step, are classi-
fied into stillbirth before delivery and stillbirth during
delivery in the second step. By this way, the multi-class
classification task is transformed into two hierarchical
binary class classification tasks. Binary classifiers have
shown superior performance compared to multi-class
classifiers in the previous studies [25].

Applying the trained classifiers to the test dataset for
evaluation and validation

After training the classifiers on the training dataset, they
are applied to the test dataset to assess their perform-
ance and generalization ability. If the performance of a
classifier for predicting the class label of the training
dataset is much better than the test dataset, it is over-
fitted with low generalization ability. To avoid the over-
fitting of the classifiers and keeping their generalization
ability in a high level, the performance of the classifier
should be assessed on the test datasets and compared to
the classifier performance on the training dataset.

In this study, for the first-step classification task,
two classes naming stillbirth as Positive class and live
birth as Negative class are considered. The second-
step classifiers consider stillbirth during delivery as
Positive class and stillbirth before delivery as Negative
class. Therefore, two binary-class classification prob-
lems should be solved.

For assessing the performance of different classifiers,
different performance measures including Accuracy,
Precision, Recall, F-Score and Area under Curve (AUC)
of the receiver operating characteristics (ROC) should be
calculated.

All of the mentioned measures range from 0 (0%) to 1
(100%). The higher values of accuracy, precision, recall,
F-Score and AUC are preferred. The average of the mea-
sures for the first-step and second-step classifiers is
reported.

Results
The main aims of this study is using machine learning
models to predict different types of stillbirth and ranking
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the features. In this section, the results of feature rank-
ing methods are described at first. Then the perform-
ance of the predictive models is reported.

For ranking the features, several feature scoring
methods are used such as DT, GBC, LR, RF and SVM
based on different measures including GI, MDA and
MC. Then, the meta feature table (MFT) is clustered to
finalized the feature ranking and choose the best clusters
of the features for training the models to predict still-
birth cases. Figure 6 shows the feature scores generated
by DT and GBC based on GI, LR based on MC and RF
based on MDA. For more clarity, other combinations of
the feature scoring measures and models are not shown
in Fig. 6.

For more clarity, all the scores are normalized by min-
max normalization method. As shown by Fig. 6, gesta-
tional age has obtained the highest score by all the
methods DT, GBC, LR and RF. Figure 7 denotes the fea-
ture scores for discriminating stillbirth occurring before
delivery from stillbirth during delivery.

As shown by Fig. 7, hospital, province, delivery main
cause, perinatal abnormality, miscarriage number and
maternal age are some important features for classifying
stillbirth before and during delivery.

As mentioned in the previous section, the features are
clustered based on different feature importance scores
and the clusters are ranked based on their corresponding
centroid importance scores.

Table 3 lists the results of feature clustering obtained
by K-means for different number of the clusters which
are the candidates of best clustering results according to
the silhouette measure.

Table 3 lists the clusters resulted by K-means for K=
2, 4 and 6 clusters and ranks them based on their cen-
troid importance scores for discriminating livebirth from
stillbirth. Moreover, the feature clusters for K=2, 3 and
7 as the candidates of the best clusters according to sil-
houette measure are listed in Table 3 for classifying still-
birth before delivery and during it.

Table 4 ranks the feature clusters based on their
predictive power.

Table 5 lists different feature sets fed to the classifiers
as their input for stillbirth prediction.

Table 6 lists the performance measures for different
classifiers designed and used in this study for stillbirth
prediction.

As illustrated by Table 6, the proposed stack ensemble
classifier outperforms the compared classifiers for predict-
ing stillbirth cases. The best performance is obtained when
the proposed stack ensemble is trained on FSC67 and FFS.
It denotes that the features in the lowest ranked clusters of
the features resulted by K-means have not significant power
to discriminate stillbirth from livebirth cases. Therefore,
they can be excluded from the predictor list.
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Table 3 feature clustering results for different number of the clusters

K Cluster.ld Features

Discriminating livebirth from 2 1

Gestational age, fetal height

stilloirth 2 All other features
4 1 Gestational age
2 Any pregnancy risk factor, fetal abnormality, delivery risk factors, maternal education, maternal
insurance type, hospital type, delivery type
3 Fetal height
4 All other features
6 1 Gestational age
2 Any pregnancy risk factor, fetal abnormality, delivery risk factors, maternal education, hospital type,
delivery type
3 Gestational diabetes, pre-eclampsia or eclampsia risk factors, placental abruption, Meconium-stained
amniotic fluid, labor main cause, fetal gender, maternal insurance type
4 Fetal height
5 Province, hospital, region, city, medical science university operator the hospital, cesarean main cause,

maternal age
6 All other features

Discriminating stillbirth before 2 1
delivery from during it

Cesarean main cause, gestational age, miscarriage number, fetal abnormality, medical science
university operator of the hospital, province, hospital, fetal gender, fetal height, maternal education,

delivery main cause, maternal age

2 All other features

31 Cesarean main cause, gestational age, miscarriage number, fetal abnormality, medical science
university operator of the hospital, perinatal gender, perinatal height, maternal education, delivery

main cause, maternal age

2 Province, hospital
3 All other features
71 Number of the previous deliveries, number of the pregnancies, number of livebirth in the previous

pregnancies, hospital type, maternal insurance type

2 Gestational age, cesarean main cause, medical science university operator of the hospital, fetal height,
maternal education, maternal age

Province

Miscarriage number

Hospital

~N O MW

All other features

Fetal abnormality, fetal gender, delivery main cause

Figure 8 illustrates the ROC for our proposed stack
ensemble which is trained on FSC67 feature set.

As shown by Fig. 8, ROC of the proposed stack en-
semble is near to the left and upper axes which demon-
strates a very good performance for predicting stillbirth
cases.

Figure 9 shows the precision-recall curve for the
proposed stack ensemble classifier in this study to
predict stillbirth cases. The relationship between pre-
cision and recall (sensitivity) is shown by precision-
recall curve for different cut-off values. Precision-
recall curve is less sensitive to the number of data in-
stances belonging to each class in a binary classifica-
tion. Therefore, it is recommended to show both

ROC and Precision-recall curves for assessing the
classifier performance.

As shown by Fig. 9, precision-recall curve for each fold
of 5-fold C.V. is a zigzag curve. But, all curves are near
to the upper and right axis which shows a highly reason-
able performance for our proposed stack ensemble clas-
sifier in all folds of 5-fold C.V. samples.

The proposed SE is calibrated using isotopic non-
parametric calibration method and the calibration
score is 0.07. The process is repeated 10,000 times
and AUC of SE classifiers using random different
training datasets are used as null distribution.
Therefore, the significance p-value is calculated to
assess the specificity of the proposed SE. The
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Table 4 ranking the clusters of the features for different number of the clusters

problem K Cluster.ld Rank
Discriminating livebirth from stillbirth 2 CF21 The First rank
CF22 The second rank
4 CF41 The first rank
CF42 The third rank
CF43 The second rank
CF44 The fourth rank
6 CF61 The first rank
CF62 The third rank
CF63 The fifth rank
CFo64 The second rank
CFé5 The fourth rank
CFe6 The sixth rank
Discriminating stillbirth before delivery from 2 CS21 The first rank
during it S22 The second rank
3 CS31 The second rank
CS32 The first rank
CS33 The third rank
7 CS71 The sixth rank
CS72 The fifth rank
CS73 The second rank
CS74 The third rank
CS75 The fourth rank
Cs76 The first rank
Ccs77 The seventh rank

obtained p-value is 0.0126 which shows the signifi-
cance of the proposed SE.

Discussion

The main focus of this study is stillbirth prediction by
considering the maternal demographic characteristics,
social environmental factors, maternal underlying dis-
eases and risk factors of pregnancy and delivery, mater-
nal related medical history, perinatal descriptors, and
information describing the delivery process. The main
difference between our study and the previous ones is
that their focus has been mainly on early prediction of
stillbirth preferably before 24th gestational week. It has

been very helpful but could not diagnose the factors
which may lead to stillbirth during the delivery process.
According to WHO report, about a half of stillbirth
cases have occurred during the delivery. In this study,
the delivery descriptors are added to the considered fea-
ture to predict all stillbirth cases. A two-step classifica-
tion model is proposed which classifies all birth cases
into livebirth and stillbirth in the first step and classifies
stillbirth cases into before delivery and during it in the
second step.

The proposed SE can be used as a decision support
system to predict stillbirth. After training the proposed
SE, the input features describing each new case can be

Table 5 different feature sets fed to the classifiers as their input variables to predict stillbirth

Feature Set Included Features

FFS All features

FSC22 The union of the features belonging to the higher-ranked clusters (CF21 and CS21) while all features are clustered into two clusters

FSC43 The union of the features belonging to the higher-ranked clusters (CF31, CF32, CS41, CS42 and CS43) while all features are clustered
into four clusters for the first-step classification and three clusters for the second-step classification

Fsce7

The union of the features belonging to the higher-ranked clusters (CF61, CF62, CF63, CF64, CF65, CS71, CS72, CS73, CS74, CS75 and

CS76) while all features are clustered into six clusters for the first-step classification and seven clusters for the second-step classification
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Feature Set Classifier Accuracy Precision Recall (Sensitivity) Specificity F-Score AUC
FSC22 DT 7831 66.81 86.79 69.03 75.50 7831
LR 76.57 7038 8034 7025 7503 76.60
SVM 7862 65.55 8876 6533 7542 7869
GBC 78.54 67.17 86.95 67.18 75.79 78.65
RF 7867 67.97 86.49 68.00 76.12 7867
SE 79.60 7085 87.19 71.12 8003 79.82
FSC43 DT 75.27 7127 7750 70.95 74.26 7524
LR 80.90 7475 8524 74.72 79.66 8093
SVM 8068 71.19 87.88 7090 7865 80.59
GBC 82.02 7752 85.20 7748 81.17 82.12
RF 81.88 7547 86.59 7561 8065 8191
SE 8993 87.10 9118 87.04 89.90 89.77
FSC67 DT 7541 76.00 75.13 76.16 7556 75.32
LR 73.54 69.76 7548 69.69 7251 7349
SVM 74.66 8378 73.96 83.81 7846 7435
GBC 8237 79.03 84.70 78.84 81.77 82.26
RF 82.30 757 87.24 7574 81.13 82.17
SE 90.56 88.02 91.37 88.10 90.58 90.00
FFS DT 7393 74.90 7277 74.67 73.82 7397
LR 81.74 74.02 86.82 7411 7991 81.60
SVM 6852 75.10 6567 7497 7007 6864
GBC 82.89 76.17 87.34 76.19 8138 82.77
RF 8049 7002 8776 7013 77.89 8031
SE 9055 87.14 9219 87.06 90.55 89.85
g
Receiver operating characteristic example
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Fig. 8 The ROC of the proposed stack ensemble classifier with the best AUC for stillbirth prediction
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fed into the trained proposed SE. Then, the model will
assign the new case a class label predicting its outcome
as livebirth, stillbirth before delivery and stillbirth during
delivery. If the predicted class label for new case is still-
birth before delivery, it is recommended to increase the
monitoring and care services during pregnancy for this
case. If the new case is classified into stillbirth during
delivery, it is suggested that the delivery process is per-
formed carefully using more experiences staff and
required instruments, medicine and any other resources.

In this study, two main achievements are obtained:

A new stack ensemble classifier is proposed which
outperforms the compared popular classifiers with the
average accuracy of 90%. The accuracy of the proposed
SE for test dataset is 90% and for training dataset is
90.51% which denotes no overfitting is occurred.

— The features are ranked based on a new proposed
method according to their predictive ability for
discriminating stillbirth from livebirth and
discriminating different types of stillbirth

Although some clinical and anatomical risk factors for
early prediction of stillbirth cases are not included in the
features considered in this study, the obtained

performance for predicting stillbirth by the proposed
stack ensemble classifier is surprisingly high.

The most important features in this study for discrim-
inating stillbirth from livebirth are the gestational age
and fetal height. The next-rank features are having preg-
nancy risk factors, perinatal abnormality, delivery risk
factors, maternal education, hospital type and delivery
type. As mentioned in Table 1, gestational age and fetal
height describe perinatal characteristics. Having preg-
nancy risk factors, delivery risk factors, maternal educa-
tion and delivery type are related to maternal properties.
Hospital type is a health system related factor.

The gestational age and fetal height show the fetal
growth status. According to the previous studies, a main
factor which may lead to stillbirth is fetal growth restric-
tion [14]. Our main findings confirm this issue, too.

Pregnancy risk factors has been diagnosed as a feature
increasing the probability of stillbirth in the previous
studies [9] as our findings.

Perinatal abnormality has different categories such as
chromosomal  abnormalities, pulmonary stenosis,
Truncus arteriosus, Coarctation of the aorta and so on.
Fetal disorders and malformations has been identified as
one of the most important causes of stillbirth in a previ-
ous study [26]. Our study results confirm this.
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Delivery risk factors and complications has been
shown as the predictive features for stillbirth during the
delivery process in a previous study [27]. Our experi-
mental results show this, too.

Maternal education is diagnosed in this study as a
main factor influencing stillbirth. A previous study has
concluded that Stillbirth rates have been increased for
mothers with lower levels of education [28].

Hospital type is a feature related to the healthcare
system and it is identified as one of the most important
features discriminating livebirth from stillbirth in this
study. A previous study has confirmed the effect of the
healthcare system on increasing or reducing the stillbirth
rates [27].

Delivery type (vaginal birth or cesarean) is another
important predictor of stillbirth in this study. A previous
study has confirmed that the operative delivery,
especially Caesarean section, can reduce the rates of
stillbirth [29].

The most important predictors for stillbirth cases
occurring before and during the delivery process are
hospital, province, delivery main cause, perinatal abnor-
mality, miscarriage number and maternal age.

Hospital is a component of a healthcare system and its
quality of care can have important effect of controlling
stillbirth cases occurring during delivery process. More-
over, different provinces may have different levels of
quality of care and it has impact on stillbirth rates.

Delivery main cause is another high-ranked feature
diagnosed in this study for differentiating between still-
birth occurring before delivery from stillbirth occurring
during it. The previous studies has confirmed that labor
complications and placenta problems can lead to still-
birth [29].

Perinatal abnormality is discussed and mentioned
above. Therefore, we do not repeat it here.

Miscarriage number is one of the top-features in this
study to discriminate stillbirth before from delivery and
stillbirth during the labor. The previous studies have
found the previous pregnancy loss as an independent
factor leading to stillbirth [30].

Maternal advanced age is identified as a high-ranked
discriminator for predicting different types of stillbirth
cases and it has been recognized as an important pre-
dictor leading to stillbirth before delivery in the previous
studies, too [31].

The high-ranked predictors of livebirth, stillbirth
before delivery and stillbirth during it should be catego-
rized into manageable and unmanageable factors. For
manageable factors, the appropriate policies for monitor-
ing and management of them can be adapted to prevent
or at least reduce the stillbirth cases.

It is suggested that finding the effectiveness of differ-
ent policies taken for monitoring and management of
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high-ranked predictors of stillbirth as a future research
direction.

The main limitations of our study are lacking the
information of gene expression data and some bio-
markers which are important risk factors of occurring
stillbirth. Moreover, life style information for pregnant
women is not available which may have significant dis-
criminative power between stillbirth and living birth
cases.

Therefore, it is proposed to augment IMAN registry
dataset with genetic descriptors for maternal and pre-
natal and life style characteristics for pregnant women to
be considered in the future studies for stillbirth
prediction.

Moreover, it is suggested to collect data for several
years which enables the researchers to find the effect of
the environmental factors such as air pollutants, weather
condition, epidemic and pandemic situations of infec-
tious diseases, seasonal diseases and other factors on
stillbirth and livebirth patterns.

On the other hand, designing and implementing
mobile applications to help maternal women for moni-
toring their health status and preventing from stillbirth
due to manageable important factors can be another
proposed research opportunity.

Conclusions

This study proposes machine learning methods for pre-
dicting stillbirth as the first task and discriminate still-
birth before delivery from stillbirth occurring during
delivery process as the second task. For this purpose, a
large national dataset is analyzed including about 1,400,
000 records. The proposed stack ensemble classifier for
solving this problem outperforms the compared
methods with the average accuracy of 90% and AUC of
90%. Moreover, the predictors are ranked based on their
predictive power via a new proposed feature scoring
method in this study.

In this study, different from the previous studies, a
combination of maternal demographic features, clinical
history, fetal properties, delivery descriptors, environ-
mental features, healthcare service provider descriptors
and socio-demographic features are considered as the
input features for stillbirth prediction.

According to the performance of the classifiers, the
best feature set to predict stillbirth in our dataset
includes gestational age, any pregnancy risk factor, fetal
abnormality, delivery risk factors, maternal education,
hospital type, delivery type, gestational diabetes, pre-
eclampsia or eclampsia risk factors, placental abruption,
meconium-stained amniotic fluid, labor main cause, fetal
gender, maternal insurance type, fetal height, province,
hospital, region, city, medical science university operator
the hospital, cesarean main cause, maternal age, number
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of the previous deliveries, number of the pregnancies,
number of livebirth in the previous pregnancies, mater-
nal insurance type, delivery main cause and miscarriage
number.

Among them, the top features discriminating livebirth
from stillbirth are gestational age and fetal height. More-
over, hospital, province, delivery main cause, perinatal
abnormality, miscarriage number and maternal age are
identified as the high-ranked features for differentiating
between stillbirth before and during delivery.

The average gestational age for stillbirth cases is lower
than for livebirth cases. Fetal height as a factor showing
fetal growth restrictions is another important feature for
discriminating livebirth from stillbirth cases. Perinatal
abnormalities and previous miscarriage experience can
increase the probability of stillbirth for the current preg-
nancy. Some provinces can provide limited healthcare
services and the rate of stillbirth cases in these provinces
are higher than the provinces with higher level of health-
care services. Delivery main cause is an important fea-
ture can lead to stillbirth during delivery.

Top features for predicting different types of stillbirth
are some maternal and fetal descriptors and healthcare
system related factors. They can be divided into manage-
able and unmanageable groups which adopting the ap-
propriate policies for manageable predictors of stillbirth
can reduce the stillbirth rates.

But, our study has main limitation which is the lack of
some important risk factors for predicting stillbirth ac-
cording to the previous studies’ results. It is proposed to
augment our dataset with more independent and
dependent previously confirmed risk factors of stillbirth
and rank all features again in a future study. Moreover,
adding life style related risk factors can enable re-
searchers to identify the effect of different life styles on
the stillbirth rates.

On the other hand, considering all descriptors of the
healthcare systems can be helpful to find the association
between the properties of a healthcare system and its re-
lated stillbirth rates.

The identified risk factors can be grouped into man-
ageable and unmanageable features. Investigating the ef-
fectiveness of different policies for management of the
risk factors of stillbirth is a future research opportunity.
Finally, implementing mobile applications for monitor-
ing and managing the maternal women who are at
higher risk of the future stillbirth is another proposed re-
search direction.
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