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Abstract 

Background This study investigates the causal relationship between lipid traits and GDM in an effort to better under-
stand the aetiology of GDM.

Methods Employing a two-sample Mendelian Randomization (MR) framework, we used Single Nucleotide Polymor-
phisms (SNPs) as instrumental variables to examine the impact of lipids and apolipoproteins on GDM. The research 
comprised univariable and multivariable MR analyses, with a prime focus on individual and combined effects of lipid-
related traits. Statistical techniques included the fixed-effect inverse variance weighted (IVW) method and supple-
mentary methods such as MR-Egger for comprehensive assessment.

Results Our findings revealed the following significant associations: apoA-I and HDL cholesterol were inversely cor-
related with GDM risk, while triglycerides showed a positive correlation. In multivariable analysis, apoA-I consistently 
exhibited a strong causal link with GDM, even after adjusting for other lipids and Body Mass Index (BMI).

Conclusion The study demonstrates a significant causal relationship between apoA-I and GDM risk.

Keywords Lipids, Apolipoproteins, Gestational diabetes mellitus, Mendelian randomization

Introduction
Gestational Diabetes Mellitus (GDM) represents a major 
public health concern due to its increasing prevalence 
and profound effects on both maternal and foetal health 
[1, 2]. Approximately 5–7% of pregnancies are esti-
mated to be impacted by GDM, with variations depend-
ing on the population studied and diagnostic standards 
[3]. Characterised by glucose intolerance first identified 
during pregnancy, GDM is linked to an elevated risk of 
various adverse outcomes [4]. These include a higher 

likelihood of cesarean delivery, pre-eclampsia, and the 
development of type 2 diabetes in later life for mothers 
[5–7]. For infants, the risks extend to macrosomia, hypo-
glycaemia, and a predisposition to obesity [8, 9].

Effective strategies for prevention, early detection, 
as well as management of GDM can mitigate short-
term complications and offer a chance to improve 
long-term health outcomes [10, 11]. This underscores 
the need for continued research into its pathophysiol-
ogy, risk factors, and effective interventions. Environ-
mental factors, lifestyle choices, and genetics all have a 
role in the pathophysiology of GDM [12, 13]. Research 
into the role of lipid metabolism in GDM highlights 
its significance in the pathogenesis of this condition. 
Observational studies have demonstrated that dysregu-
lated lipid profiles, including elevated triglycerides and 
low HDL cholesterol levels, are commonly observed 
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in GDM. These lipid imbalances contribute to insulin 
resistance, a hallmark of GDM [14]. Additionally, a lot 
of attention has been given to the role of specific apoli-
poproteins, particularly Apolipoprotein A-I (apoA-
I) and Apolipoprotein B(apoB), in modulating lipid 
metabolism and influencing GDM risk. Wu et al. found 
that apoA-I protects rats from pregnancy-induced 
insulin resistance by increasing insulin sensitivity and 
inhibiting inflammation in adipose tissue and skeletal 
muscle [15]. Zheng et al. reported that the serum levels 
of triglycerides, LDL cholesterol, and Apolipoprotein 
B during the first trimester of pregnancy have impor-
tant clinical value in predicting GDM [16]. However, 
the causal nature of this association is yet unclear and 
requires further investigation.

Mendelian Randomization (MR) is a method that lev-
erages genetic variations as tools to infer causal rela-
tionships between risk factors and diseases [17]. In MR 
studies, genetic variants known to affect lipid levels 
(such as those affecting HDL cholesterol, LDL choles-
terol, and triglyceride levels) are employed as instru-
mental variables. These variants are generally unaltered 
by environmental factors and disease states, making 
them ideal for examining the causal effect of lipid lev-
els on GDM risk. This robust methodology may provide 
valuable insights into the underlying mechanisms while 
shedding light on the biological pathways linking lipid-
related traits to GDM.

Materials and methods
Study design
In this research, we conducted a two-sample Mendelian 
randomization (MR) analysis in order to assess the causal 
link between lipids and apolipoproteins and GDM. SNPs 
served as instrumental variables (IVs) [18]. To enhance 
result accuracy, validating three key hypotheses through-
out the entire process is crucial [19]. We identified 
genetic variants significantly associated with lipid levels 
and calculated the corresponding F-statistics to assess 
the strength of each variant as an instrumental vari-
able. We conducted an analysis of confounding factors to 
ensure that the selected variants are not associated with 
known confounders, such as BMI. We also used methods 
such as MR-Egger regression to evaluate the potential 
pleiotropy of the genetic variants, further confirming that 
their effects on GDM are primarily mediated through 
lipid levels (Fig. 1).

The univariable MR analysis sought to analyse the cor-
relation between specific lipid-related traits and GDM. 
The multivariable MR analysis, on the other hand, aimed 
to assess the individual impacts of interrelated lipid-
related traits on GDM [20]. Both analyses aimed to com-
prehend the relationship between lipid-related traits and 
the risk of GDM, with the univariable focusing on indi-
vidual traits and the multivariable concentrating on their 
interactions. All original studies obtained ethical review 
approval and informed consent. Genetic instruments 

Fig. 1 Overview of the MR analysis process. Abbreviations: MR, mendelian randomization; IVs, instrumental variables; IVW, Inverse variance 
weighted; HDL-C, High density lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol
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for apoA-I, apoB, LDL cholesterol, HDL cholesterol, and 
triglycerides were extracted from the IEU Open GWAS 
database (Supplementary Table S1).

Statistical analyses
Our main approach for MR analysis was the fixed-effect 
inverse variance weighted (IVW) method. In cases 
where potential heterogeneity among selected SNPs 
was present, random effects modelling was employed 
[21]. Additionally, we utilised four other effective meth-
ods—MR-Egger, weighted median, weighted mode, and 
simple mode—to comprehensively analyse the potential 
relationship. It is noteworthy that although these meth-
ods offer a comprehensive evaluation, they might have 
less statistical power compared to the IVW test. We 
employed Cochran’s Q statistic and the MR-Egger test for 
assessing heterogeneity and pleiotropy, respectively.

Genetic instrument selection
In univariable MR analysis, independent SNPs linked to 
apoA-I, apoB, LDL cholesterol, HDL cholesterol, and tri-
glycerides were isolated using a threshold of linkage dis-
equilibrium clumping  (r2 = 0.001) and a window size of 
10 megabases. Specifically, we focused on genome-wide 
significant SNPs (p < 5e-8) associated with each trait so as 
to reduce redundancy.

Sensitivity analyses
To ensure the reliability of the identified causal effect of 
lipids and apolipoproteins on GDM, we carried out a 
thorough set of sensitivity analyses. Cochran’s Q statistic 
was utilised to assess potential heterogeneity within the 
data [22]. The MR-Egger intercept analysis was employed 
to investigate horizontal pleiotropy [23]. We also con-
ducted a Leave-one-out analysis to examine if any single 
SNP substantially affected the outcomes by systemati-
cally removing SNPs individually. Additionally, reverse 
MR analyses were performed to explore the potential 
reverse causal link between lipids and apolipoproteins (as 
seen in the forward MR analysis) and GDM.

For multivariable MR analysis, we applied two mod-
els to further understand the connection between lipid-
related traits and GDM risk. In Model 1, five lipid-related 
traits (apoA-I, apoB, LDL cholesterol, HDL cholesterol, 
and triglycerides) were included in multivariable analysis.

In Model 2, we included BMI for analysis, along with 
the three traits that showed positive associations in 
univariable analysis: apoA-I, HDL cholesterol, and 
triglycerides.

All analyses were performed using R (version 4.2.0) and 
RStudio, employing the R packages “TwoSampleMR” and 
“MR-PRESSO”.

Results
Univariable Mendelian randomization analysis
After excluding SNPs associated with confounders, we 
identified 261 instrumental variables for apoA-I, 179 IVs 
for apoB, 86 IVs for HDL cholesterol, 147 IVs for LDL 
cholesterol, and 216 IVs for triglycerides. F-statistics of 
Instrument Variables for lipids and apolipoproteins are 
shown in Supplementary Table S7.

A significant correlation between apoA-I and the risk 
of GDM was determined through the IVW technique 
(OR [95%CI] = 0.76 [0.68–0.86]; p < 0.001). Moreover, 
HDL cholesterol was found to be significantly associ-
ated with a lower risk of GDM (OR [95%CI] = 0.79[0.69–
0.89]; p < 0.001). Triglycerides were found to be 
significantly linked to an elevated risk of GDM (OR 
[95%CI] = 1.28[1.12–1.46]; p < 0.001). (Fig. 2 and Supple-
mentary Table S3).

A reverse MR analysis was conducted to explore the 
potential causal effect of GDM on lipid-related traits. The 
findings suggested no reverse causal relationship between 
GDM and each trait (Supplementary Table S4).

Multivariable Mendelian randomization analysis
Figure 3 presents the outcomes of the multivariable MR 
analysis in model 1. When adjusting simultaneously for 
apoA-I, apoB, LDL cholesterol, HDL cholesterol, and tri-
glycerides, apoA-I continued to have a strong causal link 
with GDM; the OR was 0.59 (95% CI = 0.38, 0.91). How-
ever, the effects for HDL cholesterol and triglycerides 
were greatly reduced (Supplementary Table S5).

Figure 4 exhibits the outcomes of the multivariable MR 
analysis in model 2. Body mass index is known as a risk 
factor for GDM. For model 2, the subjects included the 
three traits with positive results in univariable analysis 
(apoA-I, HDL cholesterol, and triglycerides) and BMI. 
When adjusting simultaneously for apoA-I, HDL cho-
lesterol and triglycerides, and BMI, apoA-I consistently 
showed a strong causal association with GDM; the OR 
was 0.59 (95% CI = 0.38, 0.92). However, the estimates 
of HDL cholesterol and triglycerides were significantly 
reduced (Supplementary Table S6).

Sensitivity analysis
In our analysis of apoB and HDL cholesterol causal 
impacts on GDM, instrumental heterogeneity was 
detected (Cochran’s Q test, p < 0.05; Supplementary 
Table S2), leading us to employ the random-effects IVW 
method. On the other hand, for other analyses where no 
heterogeneity was observed (Cochran’s Q test, p > 0.05), 
the fixed-effects IVW method was applied.

There was no evidence of horizontal pleiotropy 
in the MR-Egger intercept analysis results. Scatter 
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plots illustrated the causal effect of lipid-related traits 
on GDM across the five MR methods; a positive 

relationship is indicated by a slope greater than zero, 
and vice versa (Supplementary Figure S1). Furthermore, 

Fig. 2 Univariable Mendelian randomization results using different methods. Abbreviations: SNP, Single nucleotide polymorphism; HDL-C, High 
density lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; OR, Odds ration; CI, Confidence interval

Fig. 3 Multivariable Mendelian randomization using the inverse-variance weighted method in model 1. Model 1 included Apolipoprotein A-I, 
Apolipoprotein B, LDL cholesterol, HDL cholesterol and triglycerides. Abbreviations: SNP, Single nucleotide polymorphism; HDL-C, High density 
lipoprotein cholesterol; LDL-C, Low density lipoprotein cholesterol; OR, Odds ration; CI, Confidence interval

Fig. 4 Multivariable Mendelian randomization using the inverse-variance weighted method in model 2. Model 2 included Apolipoprotein A-I, HDL 
cholesterol, triglycerides and Body mass index. Abbreviations: SNP, Single nucleotide polymorphism; HDL-C, High density lipoprotein cholesterol; 
OR, Odds ration; CI, Confidence interval
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no discernible heterogeneity was shown by the Funnel 
plot symmetry (Supplementary Figure S2).

Discussion
The incidence of gestational diabetes mellitus (GDM) is 
increasing worldwide and poses a major concern for the 
health of pregnant women and their fetuses [24, 25]. Our 
comprehensive investigation into the role of lipids and 
apolipoproteins in GDM is essential because they play a 
key role in metabolic pathways that may have an impor-
tant impact on pregnancy outcomes [26].

Our study explored the intricate interplay between 
lipids, apolipoproteins, and GDM. ApoA-I is the major 
protein component of HDL and plays a critical role in 
reverse cholesterol transport, a key process in remov-
ing cholesterol from tissues and returning it to the liver 
for excretion. Conversely, apoB is a primary component 
of LDL, very-low-density lipoprotein, and intermediate-
density lipoprotein, which are involved in the transport 
of cholesterol and triglycerides from the liver to periph-
eral tissues.

The noteworthy associations revealed between these 
biomarkers and GDM provide novel insights into their 
potential roles in the pathogenesis of this condition. 
In the univariable Mendelian randomization analysis, 
compelling associations were discovered between lipid 
and apolipoprotein levels and the risk of GDM. Impor-
tantly, apoA-I has demonstrated an inverse correlation 
with GDM risk, suggesting its potential protective role. 
This is consistent with the established function of apoA-I 
in facilitating reverse cholesterol transport and its anti-
inflammatory properties, which could potentially miti-
gate GDM risk through enhanced lipid metabolism as 
well as reduced inflammation [27, 28]. Similarly, the 
inverse association between HDL cholesterol and the 
risk of GDM is indicative of the protective role of high-
density lipoproteins in cardiovascular health, potentially 
exerting a similar influence on GDM by modulating 
lipid homeostasis and insulin sensitivity [29, 30]. On the 
other hand, dysregulated triglyceride levels may increase 
vulnerability to GDM, as suggested by the positive con-
nection found between triglycerides and GDM risk. 
This relationship highlights the effect of high triglyc-
eride levels on insulin resistance and impaired glucose 
metabolism.

In multivariable Mendelian randomization analyses, 
two distinct models provided intriguing insights into the 
relationship between lipid profiles and gestational diabe-
tes mellitus (GDM). Model 1, which encompassed adjust-
ments for all pertinent lipid and apolipoprotein features, 
notably highlighted apoA-I’s sustained significant asso-
ciation with GDM. This reinforces the robustness of 
apoA-I’s impact on GDM risk independent of other lipid 

factors. Interestingly, although there were initial signifi-
cant correlations between HDL cholesterol and triglycer-
ides in the univariable analysis, their effects diminished 
in Model 1, suggesting a potential attenuation or media-
tion of their individual associations with GDM when 
adjusting for other lipid factors.

The critical role of apoA-I in GDM was further high-
lighted in Model 2 by the inclusion of BMI. Even after 
adjusting for BMI, apoA-I maintained a robust associa-
tion with GDM, emphasising its independent contribu-
tion to GDM risk [31]. However, the effects of HDL 
cholesterol and triglycerides were notably attenuated 
in this adjusted model, suggesting a potential interplay 
between these lipid traits and BMI in influencing GDM 
susceptibility. These findings underscore apoA-I’s con-
sistent and considerable relationship with GDM, irre-
spective of BMI adjustments, while also pointing to the 
need for deeper exploration into the complex interrela-
tionships among lipids, BMI, and GDM susceptibility to 
gain a more comprehensive understanding of their col-
lective impact.

Our study has identified a robust causal association 
between apoA-I and GDM, wherein elevated levels of 
apoA-I correspond to a significant reduction in GDM 
risk. This is partly in line with previous research. Met-
formin is a widely used insulin sensitizer [32]. As claimed 
by Karavia et  al., the sensitizing effect of metformin 
is diminished in mice with apoA-I gene knock-down 
(apoA-I (-/-)), revealing that apoA-I may be involved in 
insulin sensitization [33]. A cross-sectional study found 
that low apoA-I was associated with insulin resistance 
in patients with impaired glucose tolerance [27]. How-
ever, Retnakaran et  al. found no significant association 
between serum apoa-1 levels and the risk of insulin 
resistance or GDM in pregnant women in an observa-
tional study [34]. This discrepancy may be attributed to 
variations in study design and methodology, underlining 
the complexity involved in determining the precise role 
of apoA-I in GDM pathogenesis.

Our study uncovers a potential causal relationship 
between apoA-I levels and the risk of gestational dia-
betes, which could facilitate early prediction of GDM, 
inform prevention strategies and treatment interven-
tions, and promote the advancement of personalized 
medicine.

It is important to note that our study has a number of 
limitations. Firstly, MR studies rely on certain assump-
tions, such as the absence of pleiotropy and horizontal 
pleiotropy, which could have an effect on the validity of 
the causal inference. While employing robust genetic 
instruments and sensitivity analyses to mitigate these 
concerns, complete elimination of residual confound-
ing remains challenging. Secondly, our research also 



Page 6 of 7Shan et al. BMC Pregnancy and Childbirth          (2024) 24:347 

concentrated on the genetic effects of lipid-related 
traits on GDM risk. Although we adjusted for BMI in 
multivariable MR analysis, other factors, including 
environmental and lifestyle factors, were not taken into 
account. Subsequent studies should strive to incorpo-
rate these elements into their analyses, contributing to 
a more holistic comprehension of the causal mecha-
nisms underlying the relationship between lipid-related 
traits and GDM. Thirdly, the summary statistics used in 
our study encompass data from both male and female 
participants and do not distinguish between lipid levels 
or BMI measured before and after pregnancy. This limi-
tation may impact the specificity of our findings related 
to the risk of GDM, as the physiological conditions of 
these distinct groups can differ substantially. Addition-
ally, a significant limitation of this study is the reliance 
on summary statistics, which restricts our ability to 
investigate non-linear relationships between lipid levels 
and the risk of GDM. The analysis operates under the 
assumption that these relationships are linear, which 
may not adequately capture the complexities inherent 
in lipid metabolism. This methodological simplifica-
tion might fail to detect clinically significant non-linear 
effects, indicating that future research would benefit 
from employing more sophisticated methods capable of 
exploring these dynamics in greater detail.

In conclusion, our study strongly suggests a poten-
tial causal relationship between genetic susceptibility 
to apoA-I and a reduced risk of GDM. Further valida-
tion of our findings and investigation into the underly-
ing biological mechanisms warrant additional research, 
which may advance personalised approaches to GDM 
prevention and management.
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