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Abstract
Background  To study the validity of an artificial intelligence (AI) model for measuring fetal facial profile markers, and 
to evaluate the clinical value of the AI model for identifying fetal abnormalities during the first trimester.

Methods  This retrospective study used two-dimensional mid-sagittal fetal profile images taken during singleton 
pregnancies at 11–13+ 6 weeks of gestation. We measured the facial profile markers, including inferior facial angle 
(IFA), maxilla-nasion-mandible (MNM) angle, facial-maxillary angle (FMA), frontal space (FS) distance, and profile line 
(PL) distance using AI and manual measurements. Semantic segmentation and landmark localization were used to 
develop an AI model to measure the selected markers and evaluate the diagnostic value for fetal abnormalities. The 
consistency between AI and manual measurements was compared using intraclass correlation coefficients (ICC). The 
diagnostic value of facial markers measured using the AI model during fetal abnormality screening was evaluated 
using receiver operating characteristic (ROC) curves.

Results  A total of 2372 normal fetuses and 37 with abnormalities were observed, including 18 with trisomy 21, 7 with 
trisomy 18, and 12 with CLP. Among them, 1872 normal fetuses were used for AI model training and validation, and 
the remaining 500 normal fetuses and all fetuses with abnormalities were used for clinical testing. The ICCs (95%CI) of 
the IFA, MNM angle, FMA, FS distance, and PL distance between the AI and manual measurement for the 500 normal 
fetuses were 0.812 (0.780–0.840), 0.760 (0.720–0.795), 0.766 (0.727-0.800), 0.807 (0.775–0.836), and 0.798 (0.764–0.828), 
respectively. IFA clinically significantly identified trisomy 21 and trisomy 18, with areas under the ROC curve (AUC) of 
0.686 (95%CI, 0.585–0.788) and 0.729 (95%CI, 0.621–0.837), respectively. FMA effectively predicted trisomy 18, with an 
AUC of 0.904 (95%CI, 0.842–0.966). MNM angle and FS distance exhibited good predictive value in CLP, with AUCs of 
0.738 (95%CI, 0.573–0.902) and 0.677 (95%CI, 0.494–0.859), respectively.
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Background
Fetal facial abnormalities, such as cleft lip and palate 
(CLP) and micrognathia, are associated with structural 
abnormalities in other systems and genetic syndromes 
[1, 2]. These facial abnormalities inflict considerable dis-
tress on affected children and their families and impose 
a severe burden on society as a whole. Therefore, the 
early screen for facial abnormalities is of particular 
importance. Ultrasonography is first line for fetal facial 
structure screening as images are available in real-time, 
no radiation exposure and results are replicable. Facial 
markers during the first trimester, such as inferior facial 
angle (IFA), maxilla-nasion-mandible (MNM) angle, 
facial-maxillary angle (FMA), frontal space (FS) distance, 
and profile line (PL) distance, can be measured using 
ultrasonography. Studies have found that abnormali-
ties in these markers can indicate fetal facial deformities 
(such as CLP and micrognathia) or genetic abnormali-
ties (such as trisomy 21 and trisomy 18) [2–6]. In clini-
cal practice, it took approximately 5–6  min to measure 
all the five markers three times. The traditional manual 
measurement method is time-consuming, and requires 
sonographers with exceptional expertise in fetal medi-
cine and practical experience. Consequently, conducting 
effective assessments in primary hospitals is difficult.

In recent years, research on the role of deep learn-
ing (DL) technology in the field of fetal ultrasound has 
increased. DL has proven to be an efficient tool for medi-
cal image-processing tasks by automatically extracting 
semantic features from images, [7, 8] applications in pre-
natal ultrasound include object detection, [9, 10] seman-
tic segmentation, [11–13] and landmark localization [14]. 
Sun et al. [15] proposed the Least Absolute Shrinkage 
and Selection Operator (LASSO) method, which incor-
porates fetal nuchal translucency (NT) thickness, along 
with various facial profile markers, including pre-nasal 
thickness (PT) and MNM angle. It can serve as an effi-
cient prognostic method for trisomy 21 during the first 
trimester.

This study aimed to develop an artificial intelligence-
based measurement model for facial profile markers, 
including IFA, MNM angle, FMA, FS distance, and PL 
distance. We then aimed to assess its validity and diag-
nostic efficacy for fetal abnormalities, such as trisomy 21, 
trisomy 18, and CLP, in the first trimester.

Methods
Subjects
This retrospective study utilized archived fetal images of 
singleton pregnancies acquired through first trimester 
scanning (FTS) at the Affiliated Suzhou Hospital of Nan-
jing Medical University, Suzhou, China, between Janu-
ary 2020 and March 2022. We selected two-dimensional 
images from the mid-sagittal plane of the fetal face at 
11–13+ 6 weeks of gestation. The inclusion criteria were 
as follows: (1) the mid-sagittal image of the fetal face 
showed only the head and upper chest, with the fetal 
head occupying more than 75% of the screen; (2) fetal 
facial structures, including the forehead, nasal bone, 
nasion, palate, mandible, chin, and upper/lower lip, were 
clearly displayed in the image; (3) fetal facial images were 
unobstructed by the umbilical cord or fetal limbs; and (4) 
singleton pregnancy with follow-up results. The exclu-
sion criteria were as follows: (1) blurred images resulting 
in an unclear fetal facial structure, and (2) fetuses lost to 
follow-up. All acceptable images should meet inclusion 
criteria and exclusion criteria. This study was approved 
by the Ethics Committee of Suzhou Municipal Hospital 
(K-2022-011-K01). All pregnant women signed informed 
consent forms.

A flowchart summarizing the development and vali-
dation of the AI model is shown in Fig. 1. We excluded 
312 normal fetuses based on inclusion and exclusion cri-
teria. A total of 2372 normal fetuses (median (interquar-
tile range (IQR)) maternal age, 29 (27–31) years) and 37 
fetuses with abnormalities (median (IQR) maternal age, 
31 (28–35) years) were selected, including 18 with tri-
somy 21, 7 with trisomy 18, and 12 with CLP. The average 
width and height of all images are 1027.85 and 745.48, 
respectively. Within the normal fetal group, 500 fetuses 
were randomly selected as the clinical test set, and the 
additional fetuses was divided in an 8:2 ratio into a train-
ing set (1542 fetuses) and a validation set (330 fetuses). 
Within the abnormal fetal group, all fetuses with abnor-
malities were subjected to clinical testing to confirm the 
diagnostic efficacy of the fetal facial markers. In the clini-
cal test set of normal fetuses, all markers were measured 
using the AI model (AI group) and by a senior sonogra-
pher (manual measurement group) who had obtained 
the NT screening qualification certificate granted by the 
Fetal Medicine Foundation (FMF). The manual measure-
ment results were scrutinized by another experienced 
sonographer certified by the FMF.

Conclusions  The consistency of fetal facial profile marker measurements between the AI and manual measurement 
was good during the first trimester. The AI model is a convenient and effective tool for the early screen for fetal 
trisomy 21, trisomy 18, and CLP, which can be generalized to first-trimester scanning (FTS).

Keywords  Artificial intelligence, First trimester, Abnormal screen, Fetus, Facial profile, Markers, Deep learning, Prenatal 
ultrasonography, Automatic measurement
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Equipment, software and quality control
In this study, Philips Affiniti70 four-dimensional (4D) 
color ultrasound diagnostic equipment with C9-2 two-
dimensional probes (2–9  MHz frequency range) was 
employed. The transabdominal ultrasound images were 
imported in JPG format into the medical image intel-
ligent software Pair [16] (version 2.6; Shenzhen, China), 
developed by Shenzhen RayShape Medical Technology 
Co., Ltd.

Each standard section of the FTS was annotated by 
an experienced senior sonographer certified in FMF 
and subsequently evaluated by another FMF-certified 
sonographer of the same caliber. The two-dimensional 
ultrasound (2D-US) scanning was executed in strict 
accordance with the guidelines provided by the Interna-
tional Society of Ultrasound in Obstetrics and Gynecol-
ogy (ISUOG) [17] as well as FMF. The fetal crown-rump 
length (CRL) and NT thickness were measured, and 
the fetal nasal bone evaluated. Gross structure scan-
ning, included the fetal head, face, spine, heart, tho-
racic/abdominal cavity, thoracic/abdominal wall, kidney, 
bladder, and limbs, was completed. Additionally, fetal 
appendages, such as the placenta, amniotic fluid, umbili-
cal cord, and cervix, were observed.

Markers and annotations
The following profile markers were measured in our 
study:

(1)	IFA [3, 18]: Angle between the line orthogonal to 
the vertical part of the forehead at the level of the 
synostosis of the nasal bones and a second line 
joining the tip of the mentum to the anterior point of 
the more protruding lip (Fig. 2a).

(2)	MNM angle [4, 18]: the angle between the maxillary 
and mandibular nasion lines (Fig. 2b). The nasion 
[5] was defined as the most anterior point at the 
intersection of the frontal and nasal bones.

(3)	FMA [2, 18]: Angle between the line overlying the 
maxilla and the line across the mentum tip and 
upper lip (Fig. 2c).

(4)	FS distance [6, 18]: Maximum perpendicular distance 
from the mandibular-maxillary line (MML) to the 
most prominent part of the fetal forehead (Fig. 2d). 
The MML is an extended line that intersects the 
most anterior portions of the mandible and maxilla. 
When the MML was located anterior to the 
forehead, the distance was multiplied by -1.

(5)	PL distance [5, 18]: The maximum perpendicular 
distance from the facial profile line (FPL) to the outer 
border of the forehead (Fig. 2e). The FPL is the line 
passing through the midpoint of the anterior border 

Fig. 1  Flowchart summarizing the study design
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of the mandible and nasion. A summary diagram of 
all measured markers were shown in Fig. 2f.

To train the AI model, a specialized FMF-certified sonog-
rapher manually annotated all images in the training and 
validation sets. Altogether, we annotated four anatomical 

structures that required segmentation, including the fetal 
forehead, maxilla, mandible, and tangent at the nasion, 
as well as six crucial landmarks that required localiza-
tion, including the upper/lower lip, middle point of the 
anterior border of the maxilla/mandible, mentum, and 
nasion. The above annotation content was reviewed by 

Fig. 2  Ultrasound images showing the manual measurement of each facial profile markers: (a) inferior facial angle (IFA), 98.5°; (b) maxilla-nasion-mandi-
ble (MNM) angle, 4.9°; (c) facial-maxillary angle (FMA), 77.3°; (d) frontal space (FS) distance, 0.99 mm; (e) profile line (PL) distance, 2.71 mm; (f) summary 
graph of all markers
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an additional senior FMF-certified sonographer to ensure 
the accuracy of the labeling results.

AI model architecture
As illustrated in Fig.  3, the images of the mid-sagittal 
section were initially processed using Faster-RCNN [19] 
to acquire the region of interest (ROI), which contained 
anatomical information required for segmentation and 
localization. In order to expand the diversity of data sets 
and enhance the robustness of the model, the ROI is fur-
ther expanded by a variety of data enhancement methods 
[20], such as grayscale processing, random scaling, ran-
dom flipping, random rotation, etc.

Next, convolutional neural networks [21] (CNNs) were 
used to extract multiscale semantic features of key ana-
tomical structure. These features were then outputted 
through the parallel multitask branch network to obtain 
the regional segmentation of the four crucial anatomi-
cal structures (forehead, maxilla, mandible, and tangent 
at the nasion), and the location prediction results of six 
anatomical landmarks (upper/lower lip, middle point of 
the anterior border of the maxilla/mandible, mentum, 
and nasion). The set similarity measure function (Dice) 
loss [22] and the mean square of structure point (MSE) 
loss function will be used to constrain the training of the 
segmentation task and the key point localization task 
network, respectively.

Based on the above results, the landmarks of the 
anatomical structures were optimized by post-pro-
cessing, and relevant marker measurements were cal-
culated. Finally, the model restored the result to the 

corresponding position in the original image, according 
to the location of the ROI.

Statistical analysis
SPSS (version 22.0; Chicago, IL, USA) and GraphPad 
Prism (version 8.2; San Diego, CA, USA) software were 
used for the statistical analysis. We used the average 
Euclidean distance to evaluate the error between the 
predicted and actual landmarks as labeled by the sonog-
rapher. Continuous variables with a Gaussian distribu-
tion are expressed as mean (standard deviation, SD). 
Continuous variables without a Gaussian distribution 
are expressed as medians (interquartile range, IQR). 
Pearson correlation test was used to analyze the differ-
ences between the AI group and manual measurement 
group, and a P value less than 0.05 was deemed statisti-
cally significant. Consistency between the two groups 
was compared using the intraclass correlation coefficient 
(ICC, “Two-way random”, “absolute agreement”) and 
Bland–Altman analysis [23]. Finally, we calculated the 
AUC and 95% Confidence Interval (95%CI) to ascertain 
the diagnostic value of the AI model for identifying fetal 
abnormalities.

Results
Performance of AI measurement model for fetal facial 
markers in normal fetuses
Prediction of the six landmarks, including the upper/
lower lip, middle point of the anterior border of the max-
illa/mandible, mentum, and nasion, can directly affect the 
measurements of facial markers. Consequently, we cal-
culated the mean absolute error between the predicted 

Fig. 3  Flowchart illustrating the measurement process of facial profile markers by AI model during the first trimester
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and manually labeled values. The error values between 
AI and manual measurements of the six landmarks 
were 0.20  mm (SD 0.29), 0.15  mm (SD 0.22), 0.20  mm 
(SD 0.13), 0.20  mm (SD 0.13), 0.17  mm (SD 0.16), and 
0.16 mm (SD 0.10), respectively. The collective error of all 
landmarks was less than 0.2  mm. In addition, the aver-
age AI model measurement speed was 0.76 s per image, 
whereas the speed of manual measurement conducted by 
a senior sonographer was approximately 2 min per image.

Table 1 compares the measurements of the facial pro-
file markers. In the clinical test set, the AI measurement 
values for IFA, MNM angle, FMA, FS distance, and PL 
distance were 82.26° (62.20-102.32), 4.44° (-0.84-9.72), 
79.96° (64.94–94.97), 1.41 mm (-1.34-4.22) and 3.17 mm 
(2.07–4.27), respectively. The manual measurements 
were 82.28° (61.29-103.28), 4.90° (-0.80-10.60), 80.06° 
(63.97–96.14), 1.45 mm (-1.69-4.59) and 3.30 mm (2.05–
4.53), for the same parameters. The mean measurement 
deviations were 0.03° (-12.55-12.61), 0.46° (-3.35-4.26), 
0.10° (-10.55-10.75), 0.04  mm (-1.86-1.93), 0.12  mm 
(-0.60-0.85), respectively. Furthermore, the Pearson cor-
relation test demonstrated a strong correlation between 
the AI and manual measurements for IFA, MNM angle, 
FMA, FS distance, and PL distance (r = 0.813; r = 0.762; 
r = 0.767; r = 0.803; r = 0.814, all P < 0.001).

As illustrated in Table  2, the clinical test set AI and 
manual measurement group ICCs (95%CI) of IFA, 
MNM angle, FMA, FS distance, and PL distance were 
0.812 (0.780–0.840), 0.760 (0.720–0.795), 0.766 (0.727-
0.800), 0.807 (0.775–0.836), and 0.798 (0.764–0.828), 

respectively. These results indicate strong consistency 
between AI and manual measurements.

To better visualize the agreement between AI and man-
ual measurements, Bland–Altman diagrams were gener-
ated for the five facial markers, as depicted in Fig. 4a-e. 
Additionally, we selected a subset of the measurement 
data obtained from normal fetal images, which is pre-
sented in Fig. 5. The fourth line in Fig. 5 showed extreme 
cases of normal fetuses (poor image quality). Each col-
umn, from left to right, represents a summary graph of all 
markers as well as the measurement results of individual 
markers, including IFA, MNM angle, FMA, FS distance, 
and PL distance, respectively.

Performance of AI measurement model for fetal facial 
markers in detecting fetal abnormalities
We analyzed the diagnostic value of the AI model in 
identifying fetal abnormalities by calculating the area 
under the receiver operating characteristic curve (AUC), 
presented in Table 3; Fig. 6. Our findings indicated that 
IFA measurements were clinically significant in iden-
tifying trisomy 21 and trisomy 18, with AUCs of 0.686 
(95%CI, 0.585–0.788) and 0.729 (95%CI, 0.621–0.837), 
respectively. FMA measurement exhibited excellent per-
formance in predicting trisomy 18, with an AUC of 0.904 
(95%CI, 0.842–0.966). Furthermore, the MNM angle 
and FS distance demonstrated good predictive values for 
CLP, with AUCs of 0.738 (95%CI, 0.573–0.902) and 0.677 
(95%CI, 0.494–0.859), respectively.

However, IFA for CLP, MNM angle for trisomy 21 and 
trisomy 18, FMA for trisomy 21 and CLP, FS distance for 
trisomy 21 and trisomy 18, and PL distance for trisomy 
21, trisomy 18, and CLP failed to demonstrate any signifi-
cant predictive value, as evidenced by P-values of 0.421, 
0.841, 0.121, 0.66, 0.243, 0.856, 0.571, 0.205, 0.999, and 
0.411, respectively.

Finally, we present the predictive outcomes of the ran-
domly selected abnormal fetal images in Fig. 7. Each row, 
from top to bottom, represents the measurement result 
of AI model for trisomy 21, trisomy 18, CLP, and extreme 
cases of trisomy 21 (poor image quality) respectively. 
Each column, from left to right, represents a summary 
graph of all markers as well as the measurement results of 

Table 1  Comparison of the measurements of facial profile markers between the AI and manual measurement
IFA MNM angle FMA FS distance PL distance

AI group 82.26° (62.20-102.32) 4.44° (-0.84-9.72) 79.96° (64.94–94.97) 1.41 mm (-1.34-4.22) 3.17 mm (2.07–4.27)
Manual group 82.28° (61.29-103.28) 4.90° (-0.80-10.60) 80.06° (63.97–96.14) 1.45 mm (-1.69-4.59) 3.30 mm (2.05–4.53)
Mean of difference 0.03° (-12.55-12.61) 0.46° (-3.35-4.26) 0.10° (-10.55-10.75) 0.04 mm (-1.86-1.93) 0.12 mm (-0.60-0.85)
r 0.813 0.762 0.767 0.803 0.814
P < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
Data are given as mean (95% CI) or n

IFA inferior facial angle, MNM maxilla-nasion-mandible, FMA facial-maxillary angle, FS distance frontal space distance, PL distance profile line distance, AI artificial 
intelligence

Table 2  ICCs of facial profile markers between the AI and 
manual measurement

The AI group and manual measurement 
group
ICC 95% CI

IFA 0. 812 0.780–0.840
MNM angle 0. 760 0.720–0.795
FMA 0. 766 0.727-0.800
FS distance 0. 807 0.775-0.836
PL distance 0. 798 0.764–0.828
Data are given as n or 95% CI.

AI artificial intelligence, ICC intraclass correlation coefficients, CI confidence 
interval, IFA inferior facial angle, MNM maxilla-nasion-mandible, FMA facial-
maxillary angle, FS distance frontal space distance, PL distance profile line distance
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Fig. 4  Bland-Altman plots showing the consistency between AI and manual measurements of inferior facial angle (IFA) (a), maxilla-nasion-mandible 
(MNM) angle (b), facial-maxillary angle (FMA) (c), frontal space (FS) distance (d), and profile line (PL) distance (e). The solid line represents the mean dif-
ference between the two measurements, the dotted line represents 95% CI of the difference
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individual markers, including IFA, MNM angle, FMA, FS 
distance, and PL distance, respectively.

Discussion
Principal findings
In this study, we have developed an AI model that uti-
lizes convolutional neural networks to extract multi-
scale semantic feature sets from fetal faces. The model 
intelligently measures facial profile markers through the 
precise segmentation of crucial structures and accurate 
positioning of landmarks.

To validate the AI model, we conducted a large-scale 
clinical validation study where facial profile markers were 

randomly measured in 500 normal fetuses. The ICCs 
and Bland–Altman analysis indicated good consistency 
between AI and manual fetal facial profile marker mea-
surements (IFA, MNM angle, FMA, FS distance, and PL 
distance) during the first trimester, with all ICC values 
greater than 0.75. Moreover, the Pearson correlation test 
revealed a statistically significant correlation between the 
AI and manual measurements (r > 0.75, all P < 0.001).

Finally, we investigated the diagnostic value of the AI 
model for detecting facial abnormalities, and found that 
the fetal facial markers measured by AI model could 
effectively detect trisomy 21, trisomy 18, and CLP. In 
detail, we observed that IFA was accurate in identifying 
trisomy 21 and trisomy 18, with AUCs of 0.686 and 0.729, 
respectively. FMA achieved excellent performance in 
predicting trisomy 18, with an AUC of 0.904. The MNM 
angle and FS distance exhibited good predictive val-
ues for CLP, with AUCs of 0.738 and 0.677, respectively. 
However, the PL distance remained insignificant in pre-
dicting trisomy 21, trisomy 18, and CLP.

Results in the context of what is known
At present, studies on these facial markers mainly focus 
on the second and third trimester, we previously demon-
strated the feasibility of measuring these markers during 
the first trimester, with excellent intra- and inter-operator 
consistency [18]. We further concluded that these mark-
ers have certain diagnostic value for fetal abnormalities 
[24]: IFA had a certain value in the diagnosis for trisomy 
21 and trisomy 18; FMA had the excellent accuracy in 
detecting trisomy 18; MNM angle and FS distance were 

Table 3  The diagnostic value of AI model for fetal facial markers 
in trisomy 21, trisomy 18 and CLP

Tri-
somy 
21

Trisomy 18 CLP

IFA IFA FMA MNM 
angle

FS dis-
tance

AUC 0.686 0.729 0.904 0.738 0.677
95% CI 0.585–

0.788
0.621–
0.837

0.842–
0.966

0.573–
0.902

0.494–
0.859

Sensitivity 0.833 0.857 1 0.75 0.583
Specificity 0.488 0.666 0.743 0.718 0.813
P value 0.006 0.036 0.000 0.004 0.035
Cut-off 83.54 78.56 73.77 6.399 0.05
Data are presented as n or 95% CI.

IFA inferior facial angle, MNM maxilla-nasion-mandible, FMA facial-maxillary 
angle, FS distance frontal space distance, PL distance profile line distance, AUC 
area under the receiver operating characteristic curve

Fig. 5  Examples illustrating the measurement results in normal fetal images. The fourth line showed extreme cases of normal fetuses (poor image qual-
ity). Each column, from left to right, represents a summary graph of all markers as well as the measurement results of individual markers, including inferior 
facial angle (IFA), maxilla-nasion-mandible (MNM) angle, facial-maxillary angle (FMA), frontal space (FS) distance, and profile line (PL) distance, respectively
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reliable indicators for screening CLP, which was consis-
tent with this study.

However, manual measurement is laborious and com-
plex, and identifying a technique that can precisely and 
swiftly measure fetal facial markers is of significant 
clinical value. In this study, the average inference speed 
achieved by our model was 0.76 s per image, significantly 
outperforming manual measurements, which required 
approximately 2  min per image [24]. Our AI-based 
approach for measuring facial markers can accelerate the 
measurement process by a factor of approximately 120. 

These findings suggest that the AI model for measur-
ing facial markers can facilitate manual measurements, 
improve work efficiency of sonographers and accelerate 
early clinical evaluation of fetal prognosis.

Clinical implications
Ultrasonographic assessment of the fetal face is impor-
tant in prenatal diagnosis of fetal abnormalities. Fetal 
facial abnormalities may occur in isolation or may serve 
as an indication of underlying genetic syndromes. Mul-
tisystem syndromes are closely associated with adverse 

Fig. 6  ROC curve of inferior facial angle (IFA) measurements of fetuses with trisomy 21 (a), IFA and facial-maxillary angle (FMA) of fetuses with trisomy 18 
(b), maxilla-nasion-mandible (MNM) angle and frontal space (FS) distance of fetuses with cleft lip palate (CLP) (c). Areas under the curves, 95% CI, sensitiv-
ity, specificity, and P values are given in Table 3
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fetal outcomes [25]. Therefore, the diagnosis of facial 
abnormalities during the first trimester is important to 
facilitate timely clinical assessment of fetal prognosis. 
This helps women to make informed decisions regard-
ing their pregnancy, minimizing the waste of social 
resources.

In the era of non-invasive prenatal testing (NIPT), 
cell-free fetal DNA (cffDNA) significantly improved 
the performance of trisomy 21, with a detection rate of 
> 99% and a false positive rate (FPR) < 0.1% [26]. However, 
cffDNA was of high cost and it could not be affordable 
for all pregnant women. Further cost-saving approaches 
should be explored.

Over the past decade, automatic measurement meth-
ods [27] using AI have been implemented to mitigate 
intra- and inter-operator variation and enhance the pre-
cision of ultrasound diagnosis. In this study, AI was suc-
cessfully applied to FTS to construct a convenient facial 
markers measurement model, which can effectively pre-
dict trisomy 21, trisomy 18, and CLP fetuses, reduce the 
workload of sonographers and promote the establish-
ment of intelligent medical system.

Research Implications
This study suggests that utilizing AI model for measur-
ing facial markers to screen for birth defects is a conve-
nient and effective approach. Further verification of our 
findings, particularly concerning the diagnostic value of 
IFA in identifying trisomy 21 and FS distance in identify-
ing CLP, requires additional abnormal data. Therefore, a 

multi-center collaboration with other hospitals could be 
conducted. Additionally, accurate localization of critical 
landmarks, including the upper/lower lip, middle point 
of the anterior border of the maxilla/mandible, mentum, 
and nasion, is crucial for measuring the mentioned facial 
markers. Hence, the development of more precise algo-
rithms for locating these landmarks is necessary.

Strengths and Limitations
The strengths of this study include the large sample of the 
normal images in comparison with previous study, [18] 
with a total of 2372 annotated normal fetal images used 
to develop and validate the AI model. In clinical practice, 
the traditional manual measurement method requires 
sonographers to identify facial structures and then mea-
sure these markers in the mid-sagittal section, which is 
arduous, time-consuming, and requires sonographers 
with exceptional expertise. In contrast, our AI model can 
measure all facial markers in an average of only 0.76  s 
and automatically identify trisomy 21, trisomy 18 or CLP. 
Meanwhile, the AI model improves the interpretability 
of the entire diagnostic process by automatically locat-
ing landmarks and segmenting anatomical structures 
while ensuring a high degree of consistency with manual 
measurements.

However, this study has some limitations. First, whilst 
the majority of mid-sagittal section images could be ana-
lyzed effectively, certain unique images were difficult 
to assess. For example, the tangent at the nasion was a 
small segmentation area, so measurement was difficult 

Fig. 7  Examples illustrating the measurement results in abnormal fetal images. Each row, from top to bottom, represents the measurement result of AI 
model for trisomy 21, trisomy 18, CLP, and extreme cases of trisomy 21 (poor image quality) respectively. Each column, from left to right, represents a sum-
mary graph of all markers as well as the measurement results of individual markers, including inferior facial angle (IFA), maxilla-nasion-mandible (MNM) 
angle, facial-maxillary angle (FMA), frontal space (FS) distance, and profile line (PL) distance, respectively
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during regional segmentation. Second, the limited num-
ber of fetal abnormalities observed may have affected 
the precision of the model in identifying specific types 
of abnormalities. Third, this study is mainly related to its 
retrospective design, prospective studies are required to 
confirm the accuracy and effectiveness of the AI model 
in the future.

Finally, in order to verify the effectiveness of different 
markers in screening abnormalities on a large dataset, 
our model is trained on high-quality images with quality 
control. If it is directly applied to clinical scenes, it can 
lead to false positive and false negative situations due to 
image quality changes, structural blurriness and other 
problems, and may be overestimated the consistency of 
the current AI and manual measurements. However, we 
believe that in the future, with the input of images, the 
richness of types, the optimization of the model and the 
development of prospective studies, our model will show 
stronger robustness and accuracy.

Conclusions
In this study, we initially established an AI measurement 
model for fetal facial profile markers during the first tri-
mester, demonstrating good consistency with manual 
measurements. This innovative model has significant 
potential for popularization in FTS. As a convenient 
and effective tool for early screening for fetal trisomy 
21, trisomy 18, and CLP, the tool facilitates early clinical 
evaluation of fetal prognosis and promotes the cause of 
reproductive health.
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